Abstract

Osteoarthritis (OA) is a progressive and chronic disease. Identifying the early stages of OA disease is important for the treatment and care of patients. However, most state-of-the-art methods only use single-modal data to predict disease status, so that these methods usually ignore complementary information in multi-modal data. In this study, we develop an integrated multi-modal learning method (MMLM) that uses an interpretable strategy to select and fuse clinical, imaging, and demographic features to classify the grade of early-stage knee OA disease. MMLM applies XGboost and ResNet50 to extract two heterogeneous features from the clinical data and imaging data, respectively. And then we integrate these extracted features with demographic data. To avoid the negative effects of redundant features in a direct integration of multiple features, we propose a L1-norm-based optimization method (MMLM) to regularize the inter-correlations among the multiple features. MMLM was assessed using the Osteoarthritis Initiative (OAI) data set with machine learning classifiers. Extensive experiments demonstrate that MMLM improves the performance of the classifiers. Furthermore, a visual analysis of the important features in the multimodal data verified the relations among the modalities when classifying the grade of knee OA disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.