Abstract
In the age of Internet, online customers express their opinions on products by posting reviews. It is critical to do sentiment analysis on customers’ review data to help subsequent customers make their purchasing decisions and guide companies to improve their products. Aspect-Category Sentiment Analysis(ACSA) is a subtask of sentiment analysis, which aims to detect the aspect categories mentioned in the text and identify their corresponding sentiment polarities. Most of the previous methods regard Aspect Category Detection(ACD) and AspectCategory Sentiment Classification(ACSC) as two separate tasks, which could lead to error propagation so as to lack practicality. However, as far as we know, joint modeling of aspects and polarities has not yet received widespread attention. The only few existing joint models do not work well with representing the relation of aspect categories and its corresponding sentiment words. To address these problems, we propose a novel model (TG-GRU) based on the combination of GCN and Bi-GRU for detecting aspect categories and corresponding sentiment polarities simultaneously. Experiments are conducted on one Chinese dataset and two English datasets. Experimental results show that our model outperforms the state-of-the-art methods of joint models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.