Abstract

Gene-based, pathway, and other multivariate association methods are motivated by the possibility of GxG and GxE interactions; however, accounting for such interactions is limited by the challenges associated with adequate modeling information. Here we propose an easy-to-implement joint location-scale (JLS) association testing framework for single-variant and multivariate analysis that accounts for interactions without explicitly modeling them. We apply the JLS method to a gene-set analysis of cystic fibrosis (CF) lung disease, which is influenced by multiple environmental and genetic factors. We identify and replicate an association between the constituents of the apical plasma membrane and CF lung disease (p = 0.0099 and p = 0.0180, respectively) and highlight a role for the SLC9A3-SLC9A3R1/2-EZR complex in contributing to CF lung disease. Many association studies could benefit from re-analysis with the JLS method that leverages complex genetic architecture for SNP, gene, and pathway identification. Analytical verification, simulation, and additional proof-of-principle applications support our approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call