Abstract

BackgroundIn trauma research, “massive transfusion” (MT), historically defined as receiving ≥10 units of red blood cells (RBCs) within 24 h of admission, has been routinely used as a “gold standard” for quantifying bleeding severity. Due to early in-hospital mortality, however, MT is subject to survivor bias and thus a poorly defined criterion to classify bleeding trauma patients.MethodsUsing the data from a retrospective trauma transfusion study, we applied a latent-class (LC) mixture model to identify severely hemorrhaging (SH) patients. Based on the joint distribution of cumulative units of RBCs and binary survival outcome at 24 h of admission, we applied an expectation-maximization (EM) algorithm to obtain model parameters. Estimated posterior probabilities were used for patients’ classification and compared with the MT rule. To evaluate predictive performance of the LC-based classification, we examined the role of six clinical variables as predictors using two separate logistic regression models.ResultsOut of 471 trauma patients, 211 (45 %) were MT, while our latent SH classifier identified only 127 (27 %) of patients as SH. The agreement between the two classification methods was 73 %. A non-ignorable portion of patients (17 out of 68, 25 %) who died within 24 h were not classified as MT but the SH group included 62 patients (91 %) who died during the same period. Our comparison of the predictive models based on MT and SH revealed significant differences between the coefficients of potential predictors of patients who may be in need of activation of the massive transfusion protocol.ConclusionsThe traditional MT classification does not adequately reflect transfusion practices and outcomes during the trauma reception and initial resuscitation phase. Although we have demonstrated that joint latent class modeling could be used to correct for potential bias caused by misclassification of severely bleeding patients, improvement in this approach could be made in the presence of time to event data from prospective studies.

Highlights

  • In trauma research, “massive transfusion” (MT), historically defined as receiving ≥10 units of red blood cells (RBCs) within 24 h of admission, has been routinely used as a “gold standard” for quantifying bleeding severity

  • The shortcomings associated with this classical definition are that it excludes patients who died of hemorrhage-related causes before (1) sufficient numbers of units of blood transfused (e.g., 10th of RBCs) within the specified post-admission time frame (e.g., 24 h) to achieve successful resuscitation, and (2) interventions to stop further blood loss could be completed

  • While these definitions are greatly improved from the classical definition of MT, the predictive analysis is still based on simple logistic regressions, which can be viewed as inadequate due to misclassification in the presence of death or informative dropouts [9]

Read more

Summary

Introduction

“massive transfusion” (MT), historically defined as receiving ≥10 units of red blood cells (RBCs) within 24 h of admission, has been routinely used as a “gold standard” for quantifying bleeding severity. Rahbar et al [14] reported that 4 units of any resuscitative fluid including blood products, crystalloids and colloids, coined as the “resuscitation intensity”, within the first 30 min were predictive of 6 h mortality in their study. While these definitions are greatly improved from the classical definition of MT, the predictive analysis is still based on simple logistic regressions, which can be viewed as inadequate due to misclassification in the presence of death or informative dropouts [9]. These issues are critical because patient misclassification could result in increased risk of unnecessary blood transfusion or waste of limited and expensive blood resources

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.