Abstract
We have developed a framework for jointly conducting collaborative filtering and distance metric learning based on regularized singular value decomposition (RSVD), which discovers the user matrix and item matrix in the low rank space. Our approach is able to solve RSVD and simultaneously learn the parameters of Mahalanobis distance considering the ratings given by similar users and dissimilar users. One characteristic of our approach is that the learned model can be effectively applied to rating prediction and other relevant applications such as trust prediction, resulting in a solution which is coherent and optimal to both tasks. Another characteristic is that social community information and similarity information can be easily considered in our framework. We have conducted extensive experiments on rating prediction using real-world datasets to evaluate our framework. We have also compared our framework with other existing works to illustrate the effectiveness. Experimental results show that our framework achieves a promising prediction performance and outperforms the existing works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.