Abstract
This paper proposes a joint decomposition method that combines Lagrangian decomposition and generalized Benders decomposition, to efficiently solve multiscenario nonconvex mixed-integer nonlinear programming (MINLP) problems to global optimality, without the need for explicit branch and bound search. In this approach, we view the variables coupling the scenario dependent variables and those causing nonconvexity as complicating variables. We systematically solve the Lagrangian decomposition subproblems and the generalized Benders decomposition subproblems in a unified framework. The method requires the solution of a difficult relaxed master problem, but the problem is only solved when necessary. Enhancements to the method are made to reduce the number of the relaxed master problems to be solved and ease the solution of each relaxed master problem. We consider two scenario-based, two-stage stochastic nonconvex MINLP problems that arise from integrated design and operation of process networks in the case study, and we show that the proposed method can solve the two problems significantly faster than state-of-the-art global optimization solvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.