Abstract
As the sequencing cost continued to drop in the past decade, RNA sequencing (RNA-seq) has replaced microarray to become the standard high-throughput experimental tool to analyze transcriptomic profile. As more and more datasets are generated and accumulated in the public domain, meta-analysis to combine multiple transcriptomic studies to increase statistical power has received increasing popularity. In this article, we propose a Bayesian hierarchical model to jointly integrate microarray and RNA-seq studies. Since systematic fold change differences across RNA-seq and microarray for detecting differentially expressed genes have been previously reported, we replicated this finding in several real datasets and showed that incorporation of a normalization procedure to account for the bias improves the detection accuracy and power. We compared our method with the popular two-stage Fisher's method using simulations and two real applications in a histological subtype (invasive lobular carcinoma) of breast cancer comparing PR+ versus PR- and early-stage versus late-stage patients. The result showed improved detection power and more significant and interpretable pathways enriched in the detected biomarkers from the proposed Bayesian model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.