Abstract

For a dense set of genetic markers such as single nucleotide polymorphisms (SNPs) on high linkage disequilibrium within a small candidate region, a haplotype-based approach for testing association between a disease phenotype and the set of markers is attractive in reducing the data complexity and increasing the statistical power. However, due to unknown status of the underlying disease variant, a comprehensive association test may require consideration of various combinations of the SNPs, which often leads to severe multiple testing problems. In this paper, we propose a latent variable approach to test for association of multiple tightly linked SNPs in case-control studies. First, we introduce a latent variable into the penetrance model to characterize a putative disease susceptible locus (DSL) that may consist of a marker allele, a haplotype from a subset of the markers, or an allele at a putative locus between the markers. Next, through using of a retrospective likelihood to adjust for the case-control sampling ascertainment and appropriately handle the Hardy-Weinberg equilibrium constraint, we develop an expectation-maximization (EM)-based algorithm to fit the penetrance model and estimate the joint haplotype frequencies of the DSL and markers simultaneously. With the latent variable to describe a flexible role of the DSL, the likelihood ratio statistic can then provide a joint association test for the set of markers without requiring an adjustment for testing of multiple haplotypes. Our simulation results also reveal that the latent variable approach may have improved power under certain scenarios comparing with classical haplotype association methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.