Abstract
Generally, the computational grid consists of a large number of computing nodes, some of them are idle due to the uneven geographical distribution of computing requirements. This may cause workload unbalancing problems, which affect the performance of large-scale computational grids. In order to balance the computing requirements and computing nodes, we propose a job scheduling algorithm based on the workload prediction of computing nodes. We first analyze the causes of workload imbalance and the feasibility of reallocating computing resources. Secondly, we design an application and workload-aware scheduling algorithm (AWAS) by combining the previously designed workload prediction model. To reduce the complexity of the AWAS algorithm, we propose a parallel job scheduling method based on computing node workload prediction. The experiments show that the AWAS algorithm can balance the workload among different computing nodes on the real-world dataset. In addition, we propose the parallelism of workload prediction model from the perspective of internal structure and data set to make AWAS apply to more computing nodes of the large-scale computing grids. Experimental results show that the combination of the two can achieve satisfactory acceleration efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.