Abstract
In the field of job recruitment, traditional recommendation methods only rely on users’ rating data of positions for information matching. This simple strategy has problems such as low utilization of multi-source heterogeneous data and difficulty in mining relevant information between recruiters and applicants. Therefore, this paper proposes a recurrent neural network model based on a two-layer attention mechanism. The model first improves the entity representation of recruiters and applicants through user behavior, company-related knowledge and other information. The entities and their combinations are then mapped to the vector space using one-hot and TransR methods, and a recurrent neural network with a two-layer attention mechanism is used to obtain their potential interests from the click sequence, and then a recommendation list is generated. The experimental results show that this model achieves better results than previous models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.