Abstract
When designing dental and orthopedic implants, it is important to consider phenomena occurring at the microscopic level, particularly at the bone-implant interface. The presence of hard tissue at this interface is essential to implant viability. The integrity of this tissue-biomaterial interface is dependent on appropriate osteoblast functions (adhesion, matrix deposition, etc.) in the immediate area. Researchers have modified various materials with cell-adhesive peptides with the ultimate goal of controlling osteoblast functions. This study used microjet impingement to compare the strength of adhesion of osteoblastic cells (at varying populations) and fibroblasts to peptide-modified substrates in the presence and absence of fetal bovine serum. In the presence of the serum, there was no significant difference in cellular adhesion strength between substrates. In the absence of serum, all cells tested adhered more strongly to underlying substrates, and the strength of cellular adhesion was greater on modified surfaces than on plain glass surfaces. In the absence of serum, second-passage osteoblastic cells generally adhered to substrates more strongly than first-passage osteoblastic cells; fibroblasts adhered similarly to second-passage osteoblastic cells. Fundamental studies such as the present increase the understanding of cell adhesion to various substrates--knowledge that may be ultimately useful in creating an optimal bone-implant interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.