Abstract

The Hawking effect of a nonuniformly rectilinearly accelerating Kinnersley black hole is studied. Its horizons are rotationally symmetric. Its Hawking temperature depends not only on the time, but also on the polar angle. When a Kinnersley black hole touches its Rindler horizon, the Hawking temperature at the contact point is reduced to zero. But at the opposite pole of the black hole, the Hawking temperature increases rapidly. A jet appears as a tail of the accelerating black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.