Abstract

AbstractIn this paper we explore how to construct a Jensen-Shannon kernel for hypergraphs. We commence by calculating probability distribution over the steady state random walk on a hypergraph. The Shannon entropies required to construct the Jensen-Shannon divergence for pairs of hypergraphs are obtained from steady state probability distributions of the random walk. The Jensen-Shannon divergence between a pair of hypergraphs is the difference between the Shannon entropies of the separate hypergraphs and a composite structure. Our proposed kernel is not restricted to hypergraphs. Experiments on (hyper)graph datasets extracted from bioinformatics and computer vision datasets demonstrate the effectiveness and efficiency of the Jensen-Shannon hypergraph kernel for classification and clustering.KeywordsDisjoint UnionShannon EntropyIncidence MatrixEdit OperationMinimum VertexThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.