Abstract

In this work, we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels . Particularly, we consider the case when the underlying solutions are sufficiently smooth. In this case, the proposed method leads to a fully discrete linear system. We show that the fully discrete integral operator is stable in both infinite and weighted square norms. Furthermore, we establish that the approximate solution arrives at an optimal convergence order under the two norms. Finally, we give some numerical examples, which confirm the theoretical prediction of the exponential rate of convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.