Abstract

Glioblastoma (GBM), as the most aggressive adult brain tumor, seriously threatened people's lives with a low survival time. Standard postoperative treatment, chemotherapy combined with radiotherapy (RT), was the major therapeutic strategy for GBM. However, this therapeutic efficacy was hindered by chemoradiotherapy resistance of GBM. Herein, to sensitize temozolomide (TMZ)-based chemotherapy and RT, a hypoxia-radiosensitive nanoparticle for co-delivering TMZ and siMGMT (RDPP(Met)/TMZ/siMGMT) was synthesized in this study. Our nanoparticle could effectively release the encapsulated alkylating agent (TMZ) and small interfering O6-methylguanine-DNA-methyltransferase RNA (siMGMT) in the hypoxic GBM. DNA-damage repair was effectively inhibited by down-regulating MGMT expression and activating cell apoptosis, which obviously enhanced the sensitivity of TMZ as well as RT. In vitro and in vivo experiments showed that RDPP(Met)/TMZ/siMGMT could efficiently penetrate the blood-brain barrier (BBB), accurately target GBM cells and effectively inhibit GBM proliferation. Compared with traditional TMZ combined with RT, RDPP(Met)/TMZ/siMGMT remarkably improved the survival time of orthotopic GBM-bearing mice, which demonstrated that our nanoplatform was an efficient combinatorial GBM therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.