Abstract

Reports of adverse pregnancy outcomes after in utero exposure to very low levels of ionizing radiation are inconsistent with a threshold dose of 100 mSv for teratogenic effects in humans. In the present study, it is hypothesized that the shape of the dose–response relationship for teratogenic effects is a cumulative lognormal distribution without threshold. This hypothesis relies on the assumption that both doses and radiosensitivities in human populations exposed to ionizing radiation are random variables, modeled by lognormal density functions. Here, radiosensitivity is defined as the dose limit up to which radiation damage can be repaired by the cellular repair systems, in short, the repair capacity. Monte Carlo simulation is used to generate N pairs of individual doses and repair capacities. Radiation damage occurs whenever the dose exceeds the related repair capacity. The rate of radiation damage is the number of damages, divided by the number N of pairs. Monte Carlo simulation is conducted for a sufficient number of ascending median doses. The shape of the dose–response relationship is determined by regression of damage rates on mean dose. Regression with a cumulative lognormal distribution function yields a perfect fit to the data. Acceptance of the hypothesis means that studies of adverse health effects following in-utero exposure to low doses of ionizing radiation should not be discarded primarily because they contradict the concept of a threshold dose for teratogenic effects.

Highlights

  • According to ICRP Publication 90 (2003) [1], teratogenic radiation effects, i.e. adverse health effects after in-utero exposure, are not expected to occur in human populations below a threshold dose of 100 mSv

  • Annex J of the UNSCEAR 2000 [2] states that, after Chernobyl, “no changes in birth defects over time could be related to exposure to ionizing radiation.”

  • A significant increase in perinatal mortality was detected in Germany in 1987, one year after the Chernobyl accident [6]

Read more

Summary

Introduction

According to ICRP Publication 90 (2003) [1], teratogenic radiation effects, i.e. adverse health effects after in-utero exposure, are not expected to occur in human populations below a threshold dose of 100 mSv. Presentation of the hypothesis H ypothesis The dose–response relationship for teratogenic radiation effects is a cumulative lognormal distribution without threshold if it is assumed that both radiation doses and radiosensitivities are random variables represented by lognormal probability density distributions. Lognormal distributions are well suited for modeling population doses after the Chernobyl accident (see Supplementary Material, Fig. S3).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.