Abstract
This study investigated the dynamic changes in NiFe (hydr)oxide and identified the role of high‐valent Fe in the oxygen‐evolution reaction (OER) within alkaline media via in‐situ techniques. Several high‐valent Fe ions were found to remain considerably stable in the absence of potential in NiFe (hydr)oxide, even 96 hours after the OER. For Ni2+ hydroxide treated with 57Fe ions, where Fe sites are introduced onto the surface of Ni2+ hydroxide, no Fe4+ species were detected at the rate‐determining step (RDS). The findings of this study suggested that the oxidation of bulk Fe ions, similar to Ni ions, to high valent forms, is charge accumulation without a direct role in OER; these results offered a novel perspective on manipulating Fe states to optimize OER efficacy. The prevailing hypothesis suggested that trace amounts of high‐valent Fe ions, notably those on the surface, directly participate in OER.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.