Abstract

Generalized epilepsy is accompanied by large-amplitude synchronized spike-wave discharges on electroencephalography. The condition rapidly and synchronously involves most regions of the brain, but the mechanism underlying this global involvement remains unclear. Here I attempt to clarify this phenomenon by hypothesizing a series resonance in an equivalent electric circuit for the white matter. This hypothesis is based on the ideas that the electric conduction along an axon is due to the displacement current, and the unit structure composed of a node of Ranvier and the next node can be regarded as a capacitor or an inductor, depending on the geometry and the substance around the nodes. The flash-visual evoked potentials at various flash repetition rates were measured in generalized epilepsy patients, and compared with those for healthy controls and focal epilepsy patients. The P100 amplitude plotted against the flash repetition rate had a maximum peak at a certain flash repetition rate only for each of the generalized epilepsy patients. The observation of a peak in the P100 amplitude was inferred to reflect the series resonance phenomenon in the white matter. I speculate that patients with generalized epilepsy have large regions of white matter with similar resonance frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.