Abstract

Salt-tolerant proteases with remarkable stability are highly desirable biocatalysts in the salt-fermented food industry. In this study, the undigested autocleavage product of HlyA (halolysin A), a low-salt adapted halolysin from halophilic archaeon Halococcus salifodinae, was investigated. HlyA underwent autocleavage of its C-terminal extension (CTE) at temperatures over 40 °C or NaCl concentrations below 2 M to yield HlyAΔCTE. HlyAΔCTE demonstrated robust stability over a wide range of −20–60 °C, 0.5–4 M NaCl, and pH 6.0–10.0 for at least 72 h. Notably, HlyAΔCTE is the first reported halolysin with such exceptional stability. Compared with HlyA, HlyAΔCTE preferred high temperatures (50–75 °C), low salinities (0.5–2.5 M NaCl), and near-neutral (pH 6.5–8.0) conditions to achieve high activity, consistently with its production conditions. HlyAΔCTE displayed a higher Vmax value against azocasein than HlyA. During fish sauce fermentation, HlyAΔCTE significantly enhanced fish protein hydrolysis, indicating its potential as a robust biocatalyst in the salt-fermented food industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.