Abstract

In this paper, we investigated a new linear integro-differential equation of arbitrary order given on the closed curve located on a complex plane. The coefficients of the equation are variables and have a special form. The characteristic feature is the presence of linear functions in the coefficients. The equation is reduced to the consecutive solution of a Riemann boundary value problem on an initial curve and two linear differential equations. Differential equations are solved for analytic functions in areas into which the initial curve separates a complex plane. The corresponding fundamental systems of solutions are found, after that the arbitrary-constant variation method is applied. To achieve the analyticity of the obtained solutions the restrictions are imposed. All the arising conditions of resolvability of the input equation are written down explicitly, and if they are carried out then the solution is written in an explicit form. We represent the example demonstrating the existence of the cases when all conditions of resolvability are satisfied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.