Abstract

ABSTRACT Observations of stellar remnants linked to Type Ia and Type Iax supernovae are necessary to fully understand their progenitors. Multiple progenitor scenarios predict a population of kicked donor remnants and partially burnt primary remnants, both moving with relatively high velocity. But only a handful of examples consistent with these two predicted populations have been observed. Here we report the likely first known example of an unbound white dwarf that is consistent with being the fully cooled primary remnant to a Type Iax supernova. The candidate, LP 93-21, is travelling with a galactocentric velocity of $v_{\textrm {gal}} \simeq 605\, {\rm km}\, {\rm s}^{-1}$, and is gravitationally unbound to the Milky Way. We rule out an extragalactic origin. The Type Iax supernova ejection scenario is consistent with its peculiar unbound trajectory, given anomalous elemental abundances are detected in its photosphere via spectroscopic follow-up. This discovery reflects recent models that suggest stellar ejections likely occur often. Unfortunately the intrinsic faintness of white dwarfs, and the uncertainty associated with their direct progenitor systems, makes it difficult to detect and confirm such donors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.