Abstract
Gli3 protein processing to generate the Gli3 repressor is mediated by proteasome and inhibited by Hedgehog signaling. The Gli3 repressor concentration is graded along the anterior-posterior axis of the developing vertebrate limb due to posteriorly restricted Sonic hedgehog expression. In this study, we created a small deletion at the Gli3 locus (Gli3(Delta68)), which causes a half reduction in the Gli3 repressor levels and a slightly increased activity of full-length mutant protein in the limb. Mice homozygous for Gli3(Delta68) develop one to two extra partial digits in the anterior of the limb, while mice carrying one copy of the Gli3(Delta68) allele die soon after birth and display seven digits. These phenotypes are more severe than those found in mice lacking one wild-type Gli3 allele. The expression of dHand, Hoxd12, and Hoxd13 is anteriorly expanded in the limb, even though no up-regulation of Gli1 and Ptc RNA expression is detected. These findings suggest that a decrease in the Gli3 repressor level in combination with an increase in Gli3 full-length activity results in more severe digit patterning abnormalities than those caused by a loss of one wild-type Gli3 allele.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.