Abstract
The shear-compression coupling phenomenon is vital in the forming process of complex 3D woven composite components, but has not been effectively considered in existing macroscopic material models. A hyperelastic material model considering shear-compression coupling is developed here. Firstly, in-plane shear tests on pre-compressed specimens and compression tests on pre-sheared specimens were carried out, respectively. The results show that pre-compression can hinder and promote the in-plane shear deformation before and after shear locking occurs in the fabric, respectively. In-plane shear can contribute to compression. Then, a nonlinear hyperelastic constitutive model is presented and implemented in an Abaqus/Explicit user subroutine. Finally, a simulation study of the hemispherical forming of 3D orthogonal woven fabric was conducted using this model. The simulation results considering shear-compression coupling show more accurate in-plane shear angles and edge shapes compared to those without considering coupling. Moreover, since the shear-compression coupling is considered, the friction between the fabric and the tool needs to be reasonably discussed in the moulding simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.