Abstract

Caloric overingestion generates a sympathetic nervous system (SNS)-mediated increase in brown adipose tissue (BAT) thermogenesis; its effect on the hypothalamo-pituitary-adrenal (HPA) axis is unknown. To determine whether metabolic activation affects the HPA axis, male rats were provided palatable sucrose ad libitum. After 5 or 10 days of sucrose ingestion, BAT and basal and restraint-induced HPA variables were measured. Some rats were instrumented with temperature probes. BAT temperature and HPA axis responses to restraint were measured. Although caloric intake increased > or = 18%, body weight gain did not change after sucrose ingestion; DNA, protein, and uncoupling protein increased in BAT depots, and white adipose tissues were heavier after both 5 and 10 days. During days 5-10, the BAT-core temperature difference was +0.30 degrees C in sucrose rats and -0.46 degrees C in controls (P < 0.05); this, together with the biochemical changes, shows persistent activation of BAT by excess calories. Basal HPA measures were not altered. The sucrose group exhibited smaller BAT temperature and HPA responses to restraint on day 10; there was no HPA difference on day 5. We conclude that calorically mediated increases in BAT thermogenesis are independent of basal HPA activity; however, both systems respond concordantly to restraint stress. The diminished response to restraint in both systems in sucrose-fed rats may result from signals indicating increased energy stores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.