Abstract
This paper introduces the extension of the numerical Green's function approach for elastodynamic fracture mechanics problems. The formulation uses the hyper-singular boundary integral equation to obtain the fundamental solution for the cracked unbounded medium. The procedure is general and can be applied to multiple crack problems of general geometry. Applications to time harmonic and transient (through inverse numerical Fourier and Laplace transforms) stress intensity factor (SIF) computations are presented and compared with other numerical and analytical results, showing the good accuracy of the present strategy for these kinds of problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.