Abstract

Software maintainability is regarded as one of the most important characteristics of any software system. In today's digital world, the expanding significance of software maintenance is motivating the development of efficient software maintainability prediction (SMP) models using statistical and machine learning methods. This study proposes a hyper-parameter optimizable Software Maintainability Prediction (HPOSMP) model using the hybridized approach of data balancing and hyper-parameter optimization of Machine Learning (ML) approach using software maintainability datasets. The training dataset has been created with object-oriented software namely UIMS and QUES. To balance the dataset, Synthetic Minority Oversampling Technique (SMOTE) technology has been adopted. Further, Decision Tree, Gaussian Naïve Bayes, K-Nearest neighbour, Logistic Regression, and Support Vector Machine are adopted as Machine Learning and Statistical Regression Techniques for training of software maintainability dataset. Results demonstrate that the proposed HPOSMP model gives better performance as compared to the base SMP models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call