Abstract

The digital watermarking technique is a quite promising technique for both image copyright protection and secure transmission. However, many existing techniques are not as one might have expected for robustness and capacity simultaneously. In this paper, we propose a robust semi-blind image watermarking scheme with a high capacity. Firstly, we perform a discrete wavelet transformation (DWT) transformation on the carrier image. Then, the watermark images are compressed via a compressive sampling technique for saving storage space. Thirdly, a Combination of One and Two-Dimensional Chaotic Map based on the Tent and Logistic map (TL-COTDCM) is used to scramble the compressed watermark image with high security and dramatically reduce the false positive problem (FPP). Finally, a singular value decomposition (SVD) component is used to embed into the decomposed carrier image to finish the embedding process. With this scheme, eight grayscale watermark images are perfectly embedded into a carrier image, the capacity of which is eight times over that of the existing watermark techniques on average. The scheme has been tested through several common attacks on high strength, and the experiment results show the superiority of our method via the two most used evaluation indicators, normalized correlation coefficient (NCC) values and the peak signal-to-noise ratio (PSNR). Our method outperforms the state-of-the-art in the aspects of robustness, security, and capacity of digital watermarking, which exhibits great potential in multimedia application in the immediate future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.