Abstract

Appropriate enzyme immobilization on the electrode surface in order to access its active site has always been an important strategy for electrode modification. In this report, lactate dehydrogenase enzyme was appropriately immobilized on the glassy carbon electrode via hydrophobin (HFB1) and graphene oxide nanocomposite. The step-by-step modification was successfully confirmed by water contact analysis, cyclic voltammetry, and electrochemical impedance spectroscopy. Under optimum conditions, this biosensor demonstrated a detection limit of 8.69 nM and RSD of 4.3% and 3.6% (n = 5) for reproducibility and repeatability. The effect of scan rate on the oxidation behavior of NADH was investigated by cyclic voltammetry; and diffusion coefficient for NADH was estimated at 6.27 × 10−8 cm2.s−1. The apparent Michaelis–Menten constant (Kmapp) was amperometrically determined and it was lower than Kmapp for the free enzyme. Also, the modified electrode represented good stability after nine days with 6% decrease in current. The proposed assay was successfully used in real sample-serum-analysis and the obtained recoveries were between 93% and 104.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.