Abstract

Water scarcity and the climate change impacts on water components will drastically alter everybody's life. The Soil and Water Assessment Tool (SWAT) has been utilized in this study in combination with Sequential Uncertainty Fitting Program (SUFI-2) to simulate precipitation (P), temperature (T), blue water (BW), green water flow (GWF), and green water storage (GWS) in Kashafrood River Basin, Iran. The outputs of two Coupled Model Intercomparison Project Phase 5 (CMIP5) models (MIROC-ESM and GFDL-ESM2G) are selected for hydrological modeling under Representative Concentration Pathways (RCPs) of 4.5 and 8.5 and for the near future (2014-2042) and far future (2043-2100( periods compared to historical period (1995-2011). The results of RCPs, in comparison with the historical period, show that P and BW are increased and in GFDL-ESM2G are better than MIROC-ESM, while T tends to increase, and MIROC-ESM is better than GFDL-ESM2G. GWF, in all future periods (except in MIROC-ESM in near future and under RCP4.5 and 8.5) and in all RCPs tend to decrease, and the results of MIROC-ESM are better than those of GFDL-ESM2G in near future and are vice versa in far future. It is anticipated that GWS continues its historical trend in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.