Abstract
The group I intron is an RNA enzyme capable of efficiently catalyzing phosphoryl-transfer reactions. Functional groups that stabilize the chemical transition state of the cleavage reaction have been identified, but they are all located within either the 5'-exon (P1) helix or the guanosine cofactor, which are the substrates of the reaction. Functional groups within the ribozyme active site are also expected to assist in transition-state stabilization, and their role must be explored to understand the chemical basis of group I intron catalysis. Using nucleotide analog interference mapping and site-specific functional group substitution experiments, we demonstrate that the 2'-OH at A207, a highly conserved nucleotide in the ribozyme active site, specifically stabilizes the chemical transition state by approximately 2 kcal mol-1. The A207 2'-OH only makes its contribution when the U(-1) 2'-OH immediately adjacent to the scissile phosphate is present, suggesting that the 2'-OHs of A207 and U(-1) interact during the chemical step. These data support a model in which the 3'-oxyanion leaving group of the transesterification reaction is stabilized by a hydrogen-bonding triad consisting of the 2'-OH groups of U(-1) and A207 and the exocyclic amine of G22. Because all three nucleotides occur within highly conserved non-canonical base pairings, this stabilization mechanism is likely to occur throughout group I introns. Although this mechanism utilizes functional groups distinctive of RNA enzymes, it is analogous to the transition states of some protein enzymes that perform similar phosphoryl-transfer reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.