Abstract
The ferrate(vi) ion, [FeO4]2-, has attracted much interest in recent years because of its potential use as a green oxidant in organic synthesis and water treatment. Although there have been several reports on the use of ferrate(vi) for the oxidation of alcohols to the corresponding carbonyl compounds, the mechanism remains unclear. In this work, the kinetics of the oxidation of a series of alcohols with α-C-H bond dissociation energies ranging from 81 to 95 kcal mol-1 have been studied by UV/Vis spectrophotometry. The reactions are first-order in both [FeO4]2- and [alcohol]. The deuterium isotope effects for the oxidation of methanol/d4-methanol, ethanol/d6-ethanol and benzyl alcohol/d7-benzyl alcohol are 18.0 ± 0.1, 4.1 ± 0.1 and 11.2 ± 0.1, respectively. A linear correlation is found between the second-order rate constants and the α-C-H bond dissociation energies (BDEs) of the alcohols, consistent with a hydrogen atom transfer (HAT) mechanism. The proposed HAT mechanism is supported by DFT calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.