Abstract

H(2) is an attractive energy source for many microorganisms and is mostly consumed before it enters oxic habitats. Thus aerobic H(2)-oxidizing organisms receive H(2) only occasionally and in limited amounts. Metabolic adaptation requires a robust oxygen-tolerant hydrogenase enzyme system and special regulatory devices that enable the organism to respond rapidly to a changing supply of H(2). The proteobacterium Ralstonia eutropha strain H16 that harbours three [NiFe] hydrogenases perfectly meets these demands. The unusual biochemical and structural properties of the hydrogenases are described, including the strategies that confer O(2) tolerance to the NAD-reducing soluble hydrogenase and the H(2)-sensing regulatory hydrogenase. The regulatory hydrogenase that forms a complex with a histidine protein kinase recognizes H(2) in the environment and transmits the signal to a response regulator, which in turn controls transcription of the hydrogenase genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call