Abstract

Targeting redox vulnerability of cancer cells by pro-oxidants capable of generating reactive oxygen species (ROS) has surfaced as an important anticancer strategy. Due to the intrinsic narrow therapeutic window and other dangerous side effects of ROS generation, it is highly needed and challenging to develop pro-oxidative anticancer agents (PAAs) with high selectivity for generating ROS in cancer cells. Herein we report a hydrogen peroxide (H2O2)-activated Cu(II) pro-ionophore strategy to develop naphthazarin (Nap) as such type of PAAs based on the H2O2-mediated conversion of boronate to free phenol. The boronate-protected Nap (PNap) can exploit increased levels of H2O2 in HepG2 cells to in situ release Nap followed by its efflux via conjugation with reduced glutathione (GSH), allowing that the Nap-GSH adduct works as a Cu(II) ionophore to induce continuously GSH depletion via a reduction-dependent releasing of Cu(I) by GSH. This strategy endows PNap with the unprecedented ability to hit multi-redox characteristics (increased levels of H2O2, GSH and copper) of HepG2 cells, leading to ROS generation preferentially in HepG2 cells along with their selective death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.