Abstract

A self-powered wireless hydrogen sensor node has been designed and developed from a system level approach. By using multi-source energy harvesting circuitry such as scavenged or “reclaimed” energy from light emitting and vibrational sources as the source of power for commercial low power microcontrollers, amplifiers, and RF transmitters, the sensor node is capable of conditioning and deciphering the output of hydrogen sensitive ZnO nanorods sensors. Upon the detection of a discernible amount of hydrogen, the system will ‘wake’ from an idle state to create a wireless data communication link to relay the detection of hydrogen to a central monitoring station. Two modes of operation were designed for the use of hydrogen detection. The first mode would sense for the presence of hydrogen above a set threshold, and alert a central monitoring station of the detection of significant levels of hydrogen. In the second mode of operation, actual hydrogen concentrations starting as low as 10 ppm are relayed to the receiver to track the amount of hydrogen present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call