Abstract

AbstractBirefringent crystals could modulate the polarization of light and are widely used as polarizers, waveplates, optical isolators, etc. To date, commercial birefringent crystals have been exclusively limited to purely inorganic compounds such as α‐BaB2O4 with birefringence of about 0.12. Herein, we report a new hydrogen bonded supramolecular framework, namely, Cd(H2C6N7O3)2⋅8 H2O, which exhibits exceptionally large birefringence up to about 0.60. To the best of our knowledge, the birefringence of Cd(H2C6N7O3)2⋅8 H2O is significantly larger than those of all commercial birefringent crystals and is the largest among hydrogen bonded supramolecular framework crystals. First‐principles calculations and structural analyses reveal that the exceptional birefringence is mainly ascribed to strong covalent interactions within (H2C6N7O3)− organic ligands and the perfect coplanarity between them. Given the rich structural diversity and tunability, hydrogen bonded supramolecular frameworks would offer unprecedented opportunities beyond the traditional purely inorganic oxides for birefringent crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.