Abstract
Ammonia‑nitrogen wastewater is one of the main pollutants in the current environment. Rapid detection of microorganisms resistant to ammonia‑nitrogen provides a basis for bioremediation of ammonia‑nitrogen contaminated sites. This study uses electrochemical analysis for efficiently detecting of ammonia-resistant bacteria, utilizing a commercially available, low-cost screen-printed electrode (SPE) modified with agarose-based hydrogel (gel) or graphene oxide (GO). At the same time, the study employed electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) to monitor bacterial growth, revealing Escherichia coli (E. coli) inhibition upon ammonia‑nitrogen addition, while Raoultella terrigena (RN1) and Pseudomonas (RN2) exhibit tolerance. The method provides sensitivity results in <45 min, which is significantly faster than traditional methods. RN1 and RN2 exhibit promising ammonia‑nitrogen removal rates, reaching up to 81 % and 92 %, respectively. This study aimed to develop an effective electrochemical method for rapidly detecting the sensitivity of microorganisms to ammonia‑nitrogen. The method offers advantages such as high speed, efficiency, and cost-effectiveness, potentially providing valuable microbial resources for mitigating ammonia nitrogen wastewater pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.