Abstract

Glucose detection is vital in the food industry for safety and quality management. As a healthy ingredient, the flavor of honey is frequently impacted by the crystallization of glucose. Therefore, determining the glucose level can offer precise reference data for the manufacture of honey. Various approaches have been tried, and the enzyme-based electrochemical analytical method is one of the most important and widely used strategies. However, there are still challenges for most electrochemical methods to achieve stable detection resistant to temperature variation due to the easy inactivation of the enzyme, the poor anti-interference capacity of the detection techniques and other influences from the external environment. Herein, a hydrogel-based electrochemical biosensor is proposed to stably detect glucose even at wide ranges of temperatures via electrochemical impedance spectroscopic (EIS) measurement. The key factor for stable detection relies on the metal-organic framework nanoparticles' protective layer to guarantee the robustness of glucose oxidase (GOx), thereby achieving stable and specific detection for glucose. Moreover, a cascade reaction-induced hydrogel formation in a 3D structure can be used as an impedance readout, which not only amplifies but also further stabilizes the GOx-induced response. The prepared hydrogel-based electrochemical biosensor showed a linear response to the glucose concentration in the range of 0.75–4 mg/mL. Furthermore, the biosensor has excellent anti-interference and temperature stability. High performance liquid chromatography analysis also validated the accuracy of this biosensor in detecting glucose in the honey sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.