Abstract

This paper reports on the fabrication and test of a hydrogel-actuated microvalve that responds to changes in the concentration of specific chemical species in an external liquid environment. The microvalve consists of a thin hydrogel, sandwiched between a stiff porous membrane and a flexible silicone rubber diaphragm. Swelling and deswelling of the hydrogel, which results from the diffusion of chemical species through the porous membrane is accompanied by the deflection of the diaphragm and hence closure and opening of the valve intake orifice. A phenylboronic-acid-based hydrogel was used to construct a smart microvalve that responds to the changes in the glucose and pH concentrations. The fastest response time (for a pH concentration cycle) achieved was 7 min using a 30-/spl mu/m-thick hydrogel and a 60-/spl mu/m-thick porous membrane with 0.1 /spl mu/m pore size and 40% porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.