Abstract

This paper presents a hydrodynamic study of a propeller turbine runaway based on flow simulations and measurements results. Runaways are considered one of the most structurally damaging conditions a hydraulic turbine may encounter. This study focuses specifically on the flow dynamics in the runner and draft tube of a model propeller turbine installed on the test stand of the Hydraulic Machines Laboratory of Laval University, Quebec, Canada. The controlled runaway event reproduced on the test stand was part of a larger study into transient flow conditions. Besides global performance parameters, the measurements also featured 31 pressure transducers mounted on two runner blades. Using those measurements' results, both as boundary conditions and for validation purposes, unsteady Reynolds-averaged Navier-Stokes simulations of the entire turbine were performed. Those simulations featured transient boundary conditions to reproduce discharge and runner speed variations. Using wavelet transforms analysis, the evolution of the dominant pressure fluctuations is tracked in both, the measurements and the simulations. The wavelet analysis revealed the presence of pressure fluctuations with frequencies at a fraction of the runner rotation speed. Numerical results revealed that a vortex structure in the draft tube, similar to a part-load vortex rope, is the cause of those high-pressure fluctuations in the runner. A slight flow separation is observable on the pressure side of the blades but does not alter the flow in the inter-blade channels. Comparisons between experimental and numerical data also outline the limits of the methodology related, among others, with the imposition of strict boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call