Abstract
Evaporation in a thin film induces pronounced temperature gradient and surface tension gradient along the liquid-vapor interface and in turn engenders thermocapillary flow. This study aims to investigate the fluid flow characteristics attributed to the thermocapillarity in an evaporating thin liquid film of polar and nonpolar liquids. A numerical steady-flow model is derived based on the fundamental principles of fluid flow and heat transfer by applying the long-wave evolution technique. To scrutinize the underlying physical transport phenomena associated with the significance of thermocapillary effect in an evaporating thin liquid film, we investigate the hydrodynamic characteristics of thermocapillary convection which is typically characterized by the recirculation flow patterns. The two-dimensional recirculation flow patterns in different excess-temperature regimes are analyzed and a critical turning point at where the flow is reversed due to the thermocapillary action can be identified. Compared to other working fluids, water depicts a unique thermocapillary flow characteristic where its flow lines manifests in the form of swirls along the liquid-vapor interface. The normal and the shear stress distributions further provide a clearer picture on the strength of thermocapillarity to identify the manifestation of thermocapillary flow. The analysis of flow patterns and hydrodynamic behaviors of evaporating thin liquid films provide essential insights in discerning the occurrence of thermocapillary flow as well as the significance of thermocapillarity in polar and nonpolar liquids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.