Abstract
Abstract This paper proposes and analyzes a hybridizable discontinuous Galerkin (HDG) method for the three-dimensional time-harmonic Maxwell equations coupled with the impedance boundary condition in the case of high wave number. It is proved that the HDG method is absolutely stable for all wave numbers κ > 0 ${\kappa>0}$ in the sense that no mesh constraint is required for the stability. A wave-number-explicit stability constant is also obtained. This is done by choosing a specific penalty parameter and using a PDE duality argument. Utilizing the stability estimate and a non-standard technique, the error estimates in both the energy-norm and the 𝐋 2 ${\mathbf{L}^{2}}$ -norm are obtained for the HDG method. Numerical experiments are provided to validate the theoretical results and to gauge the performance of the proposed HDG method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.