Abstract
A Schwarz-type domain decomposition method is presented for the solution of the system of 3d time-harmonic Maxwellʼs equations. We introduce a hybridizable discontinuous Galerkin (HDG) scheme for the discretization of the problem based on a tetrahedrization of the computational domain. The discrete system of the HDG method on each subdomain is solved by an optimized sparse direct (LU factorization) solver. The solution of the interface system in the domain decomposition framework is accelerated by a Krylov subspace method. The formulation and the implementation of the resulting DD-HDG (Domain Decomposed-Hybridizable Discontinuous Galerkin) method are detailed. Numerical results show that the resulting DD-HDG solution strategy has an optimal convergence rate and can save both CPU time and memory cost compared to a classical upwind flux-based DD-DG (Domain Decomposed-Discontinuous Galerkin) approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.