Abstract

With the availability of technologies that allow us to obtain stimulus-response time series data for modeling and system identification, there is going to be an increasing need for conceptual frameworks in which to formulate and test hypotheses about intra- and inter-cellular dynamics, in general and not just dependent on a particular cell line, cell type, organism, or technology. While the semantics can be quite different, biologists and systems scientists use in many cases a similar language (notion of feedback, regulation, etc.). A more abstract system-theoretic framework for signals, systems, and control could provide the biologist with an interface between the domains. Apart from recent examples to identify functional elements and describing them in engineering terms, there have been various more abstract developments to describe dynamics at the cell level in the past. This includes Rosen's (M,R)-systems. This paper presents an abstract and general compact mathematical framework of intracellular dynamics, regulation and regime switching inspired by (M,R)-theory and based on hybrid automata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.