Abstract
A hybrid system that integrates two-dimensional (2D) GIS and three-dimensional (3D) visualization has been developed to provide unique solutions to application domains where traditional 2D GIS and 3D visualization cannot alone provide a solution. In this paper, we focus on three key issues in realizing such an integrated system, including large-scale terrain rendering, 2D and 3D combination display (for example, rendering 2D GIS layers in 3D space), expanding traditional 2D GIS analysis functions into a 3D environment, and visualizing 3D geographical data. A generic framework is developed to integrate 3D visualization with various types of 2D GIS, such as commercial GIS software, open source GIS software and spatial databases. A prototype 2D and 3D hybrid system that seamlessly integrates 2D GIS (developed with ArcEngine) and 3D rendering engine (developed with DirectX) is then developed based on the framework. In this hybrid system, 2D and 3D data are viewed within the same scene. Multiple 2D GIS layers are overlaid on the base terrain using a Level of Detail (LOD) model. Advanced query functions, data accessing, data management and spatial analysis, which are executed in the traditional 2D GIS, are provided to users in a 3D environment by continuously transforming information between the 2D GIS subsystem and the 3D subsystem. The 3D data are organized and displayed by Keyhole Markup Language (KML) and textured 3D models in the COLLAborative Design Activity (COLLADA) format. The prototype demonstrates that this hybrid system has effectively addressed the three key issues identified above and that it can seamlessly integrate 2D GIS and 3D visualization. The hybrid system has great potential to be employed in many application domains, such as urban planning, landscape design and environmental decision making, among others, to enhance the 3D design capability and facilitate public participation in the planning, design and decision-making process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.