Abstract

This paper presents a hybrid switch that parallels a power MOSFET and an IGBT as the main switch of a zero-voltage switching inverter. The combination features the MOSFET conducting in the low current region and the IGBT conducting in the high current region, and the soft switching avoids the reverse recovery problem during the device turn-on. A custom hybrid switch module has been developed for a variable-timing controlled coupled-magnetic type ZVS inverter with a nominal input voltage of 325 V and the continuous output power of 30-kW for a traction motor drive. Experimental results of the hybrid-switch based inverter with the total loss projected by temperature indicate that the inverter achieves 99% efficiency at the nominal condition and demonstrate ultrahigh efficiency operation over a wide load range. At 375-V input, the maximum measured efficiency through temperature projection and loss separation analysis is 99.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.