Abstract
Artificial physical optimizer (APO), as a new heuristic stochastic algorithm, is difficult to balance convergence and diversity when dealing with complex multi-objective problems. This paper introduces the advantages of R2 indicator and target space decomposition strategy, and constructs the candidate solution of external archive pruning technology selection based on APO algorithm. A hybrid strategy guided multi-objective artificial physical optimizer algorithm (HSGMOAPO) is proposed. Firstly, R2 indicator is used to select the candidate solutions that have great influence on the convergence of the whole algorithm. Secondly, the target space decomposition strategy is used to select the remaining solutions to improve the diversity of the algorithm. Finally, the restriction processing method is used to improve the ability to avoid local optimization. In order to verify the comprehensive ability of HSGMOAPO algorithm in solving multi-objective problems, five comparison algorithms were evaluated experimentally on standard test problems and practical problems. The results show that HSGMOAPO algorithm has good convergence and diversity in solving multi-objective problems, and has the potential to solve practical problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.