Abstract

The weak spots in an integrated energy system that may jeopardize the overall reliability call for timely and efficient Inspection and Maintenance (I&M). One core step is the reasonable allocation and deployment of limited I&M personnel or apparatus to the regions or periods with higher event risks, which requires a pinpoint spatiotemporal distribution forecast of future vulnerabilities. This paper presents a hybrid forecast methodology, the Saliency-Rough Fuzzy Utility Pattern recognition ensemble, in light of space-air-ground multi-source-heterogeneous input data. A parallel learning architecture is established and identifies the critical components with higher yields to enhance efficiency. Accordingly, more reasonable quantitative and qualitative evaluations can be carried out concurrently. Potential imprecise and uncertain data scenes are handled in quantitative assessments, both the failure hazard path sets and survival function likelihood boxes are incorporated in the designed relative path-Fussell Vesely Saliency (rp-FVS) model; and in qualitative analyses, the underlying perilous components can be distinguished via a combination of the variable precision-rough model. The rp-FVS-based fuzzy inference logic configures all membership functions identically according to components’ impacts. These two parts are integrated into the rough-fuzzy Utility Measure to discover concealed component-vulnerability interconnection patterns. Finally, an empirical case study is conducted for validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.