Abstract

High burn-up, rim structures within uranium dioxide (UO2) light water reactor fuels exhibit marked differences in microstructure that are attributed to dynamic recrystallization. The recrystallization process has three distinct, interacting components: damage accumulation, nucleation and growth of damage-free regions, and subsequent evolution of recrystallized grains. In this paper, microstructural-scale simulation techniques for all three processes are presented and assembled into a hybrid tool for modeling the entire dynamic recrystallization process. The components of the model include a phenomenological model for damage accumulation and nucleation, a Cellular Automaton (CA) model for the growth and impingement of recrystallized grains, and a kinetic Monte Carlo (kMC) Potts model for subsequent grain growth. Preliminary results of the hybrid model demonstrate the evolution of a steady state grain size. Parametric simulations show the dependence of the steady state grain size on physical variables and on system size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.