Abstract

While silk-based microfibrous scaffolds possess excellent mechanical properties and have been used for ligament tissue-engineering applications, the microenvironment in these scaffolds is not biomimetic. We hypothesized that coating a hybrid silk scaffold with an extracellular matrix (ECM)-like network of self-assembling peptide nanofibers would provide a biomimetic three-dimensional nanofibrous microenvironment and enhance ligament tissue regeneration after bone marrow-derived mesenchymal stem cell (BMSC)-seeding. A novel scaffold possessing a triple structural hierarchy comprising macrofibrous knitted silk fibers, a silk microsponge, and a peptide nanofiber mesh was developed by coating self-assembled RADA16 peptide nanofibers on a silk microfiber-reinforced-sponge scaffold. Compared with the uncoated control, RADA-coated scaffolds showed enhanced BMSC proliferation, metabolism, and fibroblastic differentiation during the 3 weeks of culture. BMSC-seeded RADA-coated scaffolds showed an increasing temporal expression of key fibroblastic ECM proteins (collagen type I and III, tenascin-C), with a significantly higher tenascin-C expression compared with the controls. BMSC-seeded RADA-coated scaffolds also showed a temporal increase in total collagen and glycosaminoglycan production (the amount produced being higher than in control scaffolds) during 3 weeks of culture, and possessed 7% higher maximum tensile load compared with the BMSC-seeded control scaffolds. The results indicate that the BMSC-seeded RADA-coated hybrid silk scaffold system has the potential for use in ligament tissue-engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.