Abstract
This paper studied the short-term prediction of wind speed by means of wavelet decomposition and Extreme Learning Machine. Wind speed signal was decomposed into several sequences by wavelet decomposition to reduce the non-stationary. Secondly, the phase space reconstructed was used to mine sequences characteristics, and then an improved extreme learning machine model of each component was established. Finally, the results of each component forecast superimposed to get the final result. The simulation result verified that the hybrid model effectively improved the wind speed prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.